Modified positive linear operators, iterates and systems of linear equations

نویسندگان

چکیده

We consider Kantorovich modifications of linking operators and Stancu the classical Bernstein operators. For modified we determine limits iterates invariant measures. In order to find have solve systems linear equations this end use a suitable iterative algorithm.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behaviour of iterates of positive linear operators

We investigate the iterates of positive linear operators on C[0, 1] which preserve the linear functions, and the asymptotic behaviour of the associated semigroup. The general results are applied to the Bernstein-Schnabl operators on the unit interval.

متن کامل

Asymptotic Behaviour of the Iterates of Positive Linear Operators

and Applied Analysis 3 then lim k Uf Lf, ∀f ∈ C X . 3.2 Moreover, if X is a compact metric space, then the convergence is uniform. Proof. Let f ∈ C X . The case when Lf f is trivial. Indeed, in this case, since Lf ∈ V andU preserves the elements of V, we haveUf ULf Lf , and hence Uf Lf , k 1, 2, . . . . If Lf / f , for sufficiently small ε > 0, the inverse image of the open set −ε, ε under the ...

متن کامل

Linear equations involving iterates of σ(N)

We study integers N satisfying the equation σ(σ(N)) = Aσ(N)+ BN .

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical foundations of computing

سال: 2023

ISSN: ['2577-8838']

DOI: https://doi.org/10.3934/mfc.2023031